3.1.51 \(\int \frac {1-2 x^2}{1-2 x^2+4 x^4} \, dx\)

Optimal. Leaf size=50 \[ \frac {\log \left (2 x^2+\sqrt {6} x+1\right )}{2 \sqrt {6}}-\frac {\log \left (2 x^2-\sqrt {6} x+1\right )}{2 \sqrt {6}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 50, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {1164, 628} \begin {gather*} \frac {\log \left (2 x^2+\sqrt {6} x+1\right )}{2 \sqrt {6}}-\frac {\log \left (2 x^2-\sqrt {6} x+1\right )}{2 \sqrt {6}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(1 - 2*x^2)/(1 - 2*x^2 + 4*x^4),x]

[Out]

-Log[1 - Sqrt[6]*x + 2*x^2]/(2*Sqrt[6]) + Log[1 + Sqrt[6]*x + 2*x^2]/(2*Sqrt[6])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1164

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e - b/c, 2]},
 Dist[e/(2*c*q), Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x
 - x^2, x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - a*e^2, 0] &&  !GtQ[b^2
- 4*a*c, 0]

Rubi steps

\begin {align*} \int \frac {1-2 x^2}{1-2 x^2+4 x^4} \, dx &=-\frac {\int \frac {\sqrt {\frac {3}{2}}+2 x}{-\frac {1}{2}-\sqrt {\frac {3}{2}} x-x^2} \, dx}{2 \sqrt {6}}-\frac {\int \frac {\sqrt {\frac {3}{2}}-2 x}{-\frac {1}{2}+\sqrt {\frac {3}{2}} x-x^2} \, dx}{2 \sqrt {6}}\\ &=-\frac {\log \left (1-\sqrt {6} x+2 x^2\right )}{2 \sqrt {6}}+\frac {\log \left (1+\sqrt {6} x+2 x^2\right )}{2 \sqrt {6}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 42, normalized size = 0.84 \begin {gather*} \frac {\log \left (2 x^2+\sqrt {6} x+1\right )-\log \left (-2 x^2+\sqrt {6} x-1\right )}{2 \sqrt {6}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(1 - 2*x^2)/(1 - 2*x^2 + 4*x^4),x]

[Out]

(-Log[-1 + Sqrt[6]*x - 2*x^2] + Log[1 + Sqrt[6]*x + 2*x^2])/(2*Sqrt[6])

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1-2 x^2}{1-2 x^2+4 x^4} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

IntegrateAlgebraic[(1 - 2*x^2)/(1 - 2*x^2 + 4*x^4),x]

[Out]

IntegrateAlgebraic[(1 - 2*x^2)/(1 - 2*x^2 + 4*x^4), x]

________________________________________________________________________________________

fricas [A]  time = 0.66, size = 45, normalized size = 0.90 \begin {gather*} \frac {1}{12} \, \sqrt {6} \log \left (\frac {4 \, x^{4} + 10 \, x^{2} + 2 \, \sqrt {6} {\left (2 \, x^{3} + x\right )} + 1}{4 \, x^{4} - 2 \, x^{2} + 1}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*x^2+1)/(4*x^4-2*x^2+1),x, algorithm="fricas")

[Out]

1/12*sqrt(6)*log((4*x^4 + 10*x^2 + 2*sqrt(6)*(2*x^3 + x) + 1)/(4*x^4 - 2*x^2 + 1))

________________________________________________________________________________________

giac [A]  time = 0.18, size = 40, normalized size = 0.80 \begin {gather*} \frac {1}{12} \, \sqrt {6} \log \left (x^{2} + \sqrt {3} \left (\frac {1}{4}\right )^{\frac {1}{4}} x + \frac {1}{2}\right ) - \frac {1}{12} \, \sqrt {6} \log \left (x^{2} - \sqrt {3} \left (\frac {1}{4}\right )^{\frac {1}{4}} x + \frac {1}{2}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*x^2+1)/(4*x^4-2*x^2+1),x, algorithm="giac")

[Out]

1/12*sqrt(6)*log(x^2 + sqrt(3)*(1/4)^(1/4)*x + 1/2) - 1/12*sqrt(6)*log(x^2 - sqrt(3)*(1/4)^(1/4)*x + 1/2)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 39, normalized size = 0.78 \begin {gather*} -\frac {\sqrt {6}\, \ln \left (2 x^{2}-\sqrt {6}\, x +1\right )}{12}+\frac {\sqrt {6}\, \ln \left (2 x^{2}+\sqrt {6}\, x +1\right )}{12} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-2*x^2+1)/(4*x^4-2*x^2+1),x)

[Out]

-1/12*ln(1+2*x^2-6^(1/2)*x)*6^(1/2)+1/12*ln(1+2*x^2+6^(1/2)*x)*6^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\int \frac {2 \, x^{2} - 1}{4 \, x^{4} - 2 \, x^{2} + 1}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*x^2+1)/(4*x^4-2*x^2+1),x, algorithm="maxima")

[Out]

-integrate((2*x^2 - 1)/(4*x^4 - 2*x^2 + 1), x)

________________________________________________________________________________________

mupad [B]  time = 0.07, size = 20, normalized size = 0.40 \begin {gather*} \frac {\sqrt {6}\,\mathrm {atanh}\left (\frac {\sqrt {6}\,x}{2\,x^2+1}\right )}{6} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(2*x^2 - 1)/(4*x^4 - 2*x^2 + 1),x)

[Out]

(6^(1/2)*atanh((6^(1/2)*x)/(2*x^2 + 1)))/6

________________________________________________________________________________________

sympy [A]  time = 0.12, size = 46, normalized size = 0.92 \begin {gather*} - \frac {\sqrt {6} \log {\left (x^{2} - \frac {\sqrt {6} x}{2} + \frac {1}{2} \right )}}{12} + \frac {\sqrt {6} \log {\left (x^{2} + \frac {\sqrt {6} x}{2} + \frac {1}{2} \right )}}{12} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*x**2+1)/(4*x**4-2*x**2+1),x)

[Out]

-sqrt(6)*log(x**2 - sqrt(6)*x/2 + 1/2)/12 + sqrt(6)*log(x**2 + sqrt(6)*x/2 + 1/2)/12

________________________________________________________________________________________